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Abstract
Analytical solutions for constant-rate pumping tests are widely used to infer aquifer properties. In this note,

we implement a methodology that approximates the time-varying pumping record as a series of segments with
linearly varying pumping rates. We validate our approach using an analytical solution for a sinusoidally varying
pumping test. We also apply our methodology to analyze synthetic test data and compare the results with those
from a commonly used method where rate variations are represented by a series of constant-rate steps.

Introduction
Hydraulic properties of an aquifer are commonly

inferred by fitting drawdown and/or recovery data
recorded from pumping tests to analytical solutions for
radial flow toward a pumping well. For mathematical sim-
plicity, such analytical solutions are commonly derived for
constant-rate conditions. However, the pumping rate may
vary either intentionally or because of technical difficulties
during the test.

The most common approach to analyze pumping
tests with variable pumping rates is based on superpo-
sition of piecewise constant rates. Considering a confined
aquifer as a linear system with time-invariant boundary
conditions, Cooper and Jacob (1946) applied the superpo-
sition principle to account for stepwise changes in pump-
ing rates. Abu-Zeid and Scott (1963), Abu-Zeid et al.
(1964) and Hantush (1964) proposed analytical solutions
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for variable-rate pumping tests assuming exponentially
decreasing pumping rates. Lai et al. (1973) and Lai and Su
(1974) extended the solution of Papadopulos and Cooper
(1967) to include leakage from the semi-confining lay-
ers when the pumping rates are exponentially and linearly
varying. Black and Kipp (1981) provided a solution to an
aquifer borehole test for sinusoidal perturbation in a con-
fined non-leaky aquifer. Rasmussen et al. (2003) extended
the Hantush (1964) solution to include sinusoidal variation
of pumping rates.

In some field applications, the pumping rates are
varied intentionally. Butler and McElwee (1990) sug-
gested that variable pumping rates can be used to increase
the sensitivity of parameters to observed drawdown,
and hence improve parameter identifiably; each time the
pumping rate is increased, a new cone of depression
(superimposed upon the original one) propagates out from
the pumping well, producing an increase in sensitivity
and a new interval of time during which the aquifer zone
influences drawdown.

Adequate representation of variable pumping rates
can be important when various natural phenomena unac-
counted for in the analytical solution are causing tran-
sients in the observed drawdown records (e.g., barometric
effects, infiltration events). In these cases, the analysis
of the observed drawdown transients is difficult, if tran-
sients caused by variable pumping rates are not accurately
captured.

The commonly used approach of constant-rate step
changes to represent pumping variability may not always
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be sufficient to capture important details in the observed
drawdown transients. For cases where the pumping vari-
ability has increasing or decreasing linear trends the
method of step changes is generally not suitable unless
a large number of closely spaced step changes are intro-
duced. Piecewise-linear approximation of pumping rate
variation has been reported in the petroleum engineer-
ing literature (Kulpin and Miasnikov 1974; Stewart et al.
1983; Streltsova 1987). Streltsova (1987) presented draw-
down due to a variable pumping rate as a summation
of drawdown responses due to a series of linear pump-
ing rate segments. However their solution is limited to
fully penetrating wells of zero radius (Theis solution).
Roumboutsos and Stewart (1988) proposed deconvolving
well-test data by numerically transforming the discrete
pressure and pumping rate data into the Laplace trans-
form domain. For a variable pumping rate they adopted a
piecewise-linear approximation.

In this note, we generalize the approach of Roum-
boutsos and Stewart (1988) to commonly used analyti-
cal solutions for pumping test analysis. We also propose
use of the discrete time convolution integral to avoid
numerical instabilities that may arise as a result of abrupt
changes in pumping rate. We implement this approach
in WELLS (available at http://wells.lanl.gov), a com-
puter program designed to analyze multi-well variable-rate
pumping tests in confined, unconfined and leaky aquifers
in a finite or infinite domain using a variety of analytical
solutions. The methodology of piecewise linearly varying
pumping rate is demonstrated using an existing analytical
solution for confined aquifers, but is also applicable to
solutions for unconfined and/or leaky aquifers. After val-
idating our methodology, we analyze synthetic pumping
test data by inversely estimating the parameters and com-
pare our results with those for the commonly used method
of constant-rate step changes in pumping rate.

Analytical Solution for Variable Pumping Rate
Consider a partially penetrating well of small radius

(i.e., rw → 0) that is in confined aquifer screened from
depths d through l below the aquifer top. For the case
when the pumping well is discharging at constant rate
Q, the Laplace transformed drawdown s̄(r, z, t) can be
expressed as (Hantush 1964):

s̄(rD, zD, pD) = Q

p
f (rD, zD, pD)

= Q/p

4πT

⎧⎨
⎩

2K0(φ0) + 4
π
×

∞∑
n=1

K0(φ0)[sin(nπlD)−sin(nπdD)]
n(lD−dD)

cos(nπzD)

(1)

where p is the Laplace transformation parameter, rD =
r/b, T = Krb, zD = z/b, pD = pt , dD = d/b, lD = l/b,
φn =

√
pD/tD + β2n2π2, tD = αst/r2, αs = Kr/Ss , Ss is

specific storage, Kr is horizontal hydraulic conductivity,
β = rDK

1/2
D , KD is anisotropic ratio, b is the aquifer

thickness, and K0 and K1 are the second-kind modified
Bessel functions of order zero and one, respectively.

The Hantush (1964) solution has the form s̄ =
Q
p
f (rD, zD, pD), where Q/p is the Laplace transform of

the constant pumping rate Q; many other constant-rate
analytical solutions for Laplace transformed drawdown
have similar form. For variable pumping rate Q(t) with
Laplace transform Q̄(p), the existing solutions can be
directly used by replacing the Q/p with Q̄(p), giving
Laplace space drawdown as

s̄ = Q̄(p)f (rD, zD, pD). (2)

Simple Representation of the Piecewise-Linear
Pumping Rates

Consider pumping rate history recorded as Q0,Q1,

Q2, . . . ,Qn at discrete time intervals t0, t1, t2, . . . , tn.
Expressing the pumping rate variation as a piecewise-
linear function allows writing Q(t) as

Q(t) =
n∑

i=1

{Qi−1 + βi(t − ti−1)}(Hti−1 − Hti ) (3)

where βi = (Qi − Qi−1)/(ti − ti−1) is the slope of ith
linear pumping element and Hti is unit step function
which equals one when t ≥ ti and remains zero elsewhere.
Using Laplace transform relations L{Hti } = 1

p
e−tip and

L{tf (t)} = − d
dp

F (p), where F(p) is the Laplace trans-
form of f (t), the Laplace transform of Equation 3 is
given as

Q̄(p) = 1

p

n∑
i=1

{
Qi−1 + βi

p

}
(e−ti−1p − e−tip)

− 1

p

n∑
i=1

βi(ti − ti−1)e
−tip. (4)

Substituting the Laplace transformed piecewise-linear
pumping rate Q̄(p) in Equation 2 gives the Laplace
transformed drawdown at any location. The solution
corresponding to Equation 2 in the time domain, s(r, z, t),
is obtained through numerical inversion of the Laplace
transform by means of an algorithm due to Crump (1976)
as modified by de Hoog et al. (1982).

To demonstrate the validity of the proposed approach,
consider a sinusoidal pumping rate Q(t) = 2.0 + sin(30t/

π) m3/d which has Laplace transform ofQ̄(p) = 2.0/p +
30/π

(30/π)2+p2 . Figure 1 presents the pumping rate variation
and drawdown at 1.0 m from a fully penetrating pumping
well of zero radius in an isotropic uniform aquifer with
T = 10m2/d and S = 1.0 × 10−5. Figure 1 compares
drawdown computed directly using the Laplace transform
of sinusoidal pumping rate variation (red curve) and the
drawdown computed by fitting a piecewise-linear function
(blue curve) between pumping rates at every 2 h (black
line). The close correspondence between analytically
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Figure 1. Comparison of analytically evaluated drawdown
due to sinusoidal pumping rate variation (green) with (blue)
and without (red) piecewise-linear approximations.

computed drawdowns with and without piecewise-linear
approximations validates the proposed methodology.

However, the simple piecewise-linear representation
of the variable pumping rates presented in Equation 4 does
not always produce satisfactory results. Consider hypo-
thetical pumping test where pumping rate varies rapidly
(shown in green lines in Figure 2). Figure 2 also shows
the computed drawdown at a point located 1.0 m from the
fully penetrating pumping will of zero radius in the same
isotropic and uniform aquifer. The drawdown computed
using piecewise-linear approximation (red lines) shows
oscillatory instability (Gibb’s effect) near the time where
the abrupt change in pumping rate (slope of linear ele-
ment βi → ∞) occurs; for example, this can occur if the
pumping is discontinued abruptly.

Convoluted Representation
of the Piecewise-Linear Pumping Rates

To avoid such numerical instabilities, we
implemented a convolution method based on a linear
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Figure 2. Drawdown evaluated using simple representation
of piecewise-linear variation of pumping rate (red curve).

combination of pumping and injection events, which is
analogous to the convolution used for the constant-rate
step approach. Each period of linear pumping rate change
can be decomposed into a combination of linear pumping
and injection events. Using a discrete convolution integral
resulting drawdown is expressed as

s(t) =
n∑

i=1

{sa′(t − ti−1) + sb′(t − ti )} (5)

where sa′(t) and sb′(t) are time-domain drawdown
due to pumping Qa′(t) = Qi−1 + βit and injection
Qb′(t) = −Qi − βit with corresponding Laplace trans-
forms Q̄a′(p)= 1

p

(
Qi−1 + βi

p

)
and Q̄b′(p)= −1

p

(
Qi + βi

p

)
respectively.

As shown in Figure 3, numerical instabilities observed
when a simple piecewise-linear approach of representing
pumping rate variation is applied (red line; Equation 4)
can be entirely avoided by applying the method based
on convolution of a linear set of pumping and injection
events (blue line). The code WELLS has implementation
of both simple and convoluted schemes.

Synthetic Example
Consider a 7-m-thick isotropic confined aquifer

(KD = 1.0) with horizontal hydraulic conductivity Kr =
5.01 m/d and specific storage Ss = 5.01 × 10−6m−1. A
pumping well of infinitesimal diameter penetrates the
upper 3.5 m of the confined aquifer and discharges at
variable rate. The pumping rate is assumed to vary linearly
and the changes occur at every hour as shown in Figure 4
(blue stars). Drawdowns were simulated at over 1000
temporal values uniformly spaced in log space spanning
from 10−4 to 1.0 d. To mimic condition during an actual
test, a random noise of ±5% magnitude was added to
the recorded drawdowns. The goal of the synthetic test

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16  18  20  22  24

 0
 2
 4
 6
 8
 10
 12

 D
ra

w
do

w
n 

[ m
 ] 

P
um

pi
ng

 R
at

e 
[ m

3 /d
 ]

Time [ Hrs ] 

Pumping Rate
Drawdown (without convolution)

Drawdown (with convlution)

Figure 3. Comparison of drawdown evaluated using simple
representation of piecewise-linear variation of pumping rate
(red curve) with the drawdown evaluated using convoluted
representation of piecewise-linear pumping rate variation
(blue curve).
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Figure 4. Comparison of inversely estimated drawdown
(blue line) with synthetic drawdown (green dots) when
pumping rate variation (blue dots) are approximated by (a)
equivalent linear changes (red line) and (b) step changes (red
line).

analysis is to estimate the aquifer parameters based on
the pumping test data applying two different approaches
to characterize pumping rate variability: (1) the piecewise-
linear approach proposed here and (2) piecewise-constant
step approach. The two approximations of the pumping
rate variability are presented in Figure 4 (red lines). The
approximate pumping rates are adjusted so that the total
amount of water pumped during the pumping test in
both cases is the same. Note that, the pumping rate is
represented by 8 piecewise-linear regions and 10 steps of
constant pumping rate.

The parameters were then inversely estimated by
minimizing the sum of squared difference between model
predicted drawdowns and synthetic drawdowns using the
PEST code Doherty (1994) for the two approximation of
the variable pumping rate. Figure 4 compares the best fit
model predicted drawdown with synthetic drawdown, and
Table 1 lists the estimated parameters. Table 1 also lists
the percentage error in the estimated parameters (values
in closed brackets) and sum of squared error (SSE) in
estimated drawdown. The piecewise-linear approximation
improves the hydraulic conductivity estimates by a
factor of about 3 and specific storage by a factor

Table 1
Comparison of Estimated Parameters and Sum of
Squared Errors (SSE) in Estimated Drawdowns
with the Synthetic True Case (Column 2) When

Time Varying Pumping Rate Is Approximated as
Piecewise-Linear (Column 3) and Step Function

(Column 4)

Quantity True Linear Changes Step Changes

Kr [m/d] 5.01 5.04 (0.60%) 5.10 (1.79%)
Ss × 10−6m−1 5.01 4.53 (9.58%) 3.99 (20.36%)
SSE m2 — 1.65 × 10−2 1.84 × 10−1

of about 2, it also results in better representation of
the actual drawdowns observed during the pumping
test (based on a comparison of simulated drawdowns
presented in Figure 4). This demonstrates that for the
cases where pumping rate variations are better represented
by piecewise-linear changes, our methodology will result
in a better posed problem for parameter estimation.
As pumping rate variations may not be adequately
represented by a relatively small number of constant-
rate step changes, the piecewise-constant approach for
representing pumping transients is not always sufficient to
accurately represent the observed drawdowns and reliably
estimate aquifer parameters.

Summary and Conclusions
The piecewise-linear approximation of time-varying

pumping rate is implemented for confined, unconfined,
and leaky aquifers in the computer program WELLS
(http://wells.lanl.gov) for multi-well variable-rate analysis
of pumping test data. The piecewise-linear approximation
can represent fairly well any time-varying pumping
rates and can reproduce the drawdown for sinusoidal
tests with a relatively small number of piecewise-linear
discretization sections. For cases when the slope of
the linear pumping event is very large (i.e., βi → ∞),
the discrete convolution integral approach can be applied
to superimpose a combination of pumping and injection
steps and thereby avoid instabilities in the numerical
Laplace inversion. Our synthetic test case demonstrates
that the piecewise-linear approximation can reduce the
uncertainty associated with parameter estimation by
providing a better representation of varying pumping
rates.
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